Submarine Canyon Variability on the Northern Slope of Puerto Rico

Cameron Troilo and Dr. Leslie Sautter
Department of Geology and Environmental Geosciences, College of Charleston

Preliminary data were collected using a Kongsberg EM302 by the NOAA Ship Okeanos Explorer.
Data were post-processed using CARIS HIPS 9.0 in which 2D and 3D surfaces were created with a 35 m resolution
were created with a 35 m resolution.
Three areas were identified for tudy: West, Central, and East. Specific canyons were identified within each. Along-canyon axis at the channel thalweg was measured for each of the 15 Canyons from 800 to 1200 m along with the straight distance in order to calculate sinuosity (along-axis length/straight length). Slope for each canyon from 800 to 1200 m was also calculated using the profiling tool in CARIS HIPS.
Cross-channel profiles were made perpendicular to the along-axis profile at canyon wall contours $600 \mathrm{~m}, 900 \mathrm{~m}$, and 1200 m . These profiles were measured to find the vertical relief and horizontal distance from each side of the canyon at each depth point. Canyon Breadth was calculated using horizontal distance/reief. Canyon F was omittea because it coula not
measured at 600 m for the profile or 800 m for the canyon sinuosity.

COLLEGE of
CHARLESTON
 GEOSCIENCES

Abstract

In 2015, the NOAA Ship Okeanos Explorer collected multibeam data using a Kongsberg EM302 off the northern coast of Puerto Rico. These data, post processed using CARIS HIPS 9.0 , were used to create 2 and 3D surfaces at 25 m resolution which revealed numerous submarine canyons spanning from depths of 100 to 2000 m . Each submarine canyon varies in width, depth, and the number of tributaries, but all evolve south to north. Geomorphic patterns regarding the width, depth, and cross-section profiles were examined. Canyon shapes were studied and analyzed exa identify possible correlations between canyon shap identify possibie correlations between canyon shapth, and canyons were compared to and depth, and canyons were compared to
characterized variability based on their location in characterized variability based on their location in
order to determine a pattern of canyon creation. The variability of canyon shape allowed examination and determination of potential canyon creating forces located on the northern slope of Puerto Rico.

Background

Submarine canyons are major geomorphic features of continenta shelves that are conduits for sediment export from coastal and shelf to deep sea environments (Shepard and Dill, 1966). Most submarine canyons are thought to have steep-walled, sinuous valleys with V-shaped cross sections, with canyon axes having relief comparable to the largest of land canyons (Shepard, 1972). They can be found throughout the world, and come in various shapes and
Alos.
Along the northern slope of Puerto Rico, numerous submarine canyons can be found. These canyons vary in length, width, and sinuosity. Some canyons are long and straight while others are short and undulating. Similar types of canyons seem to be created close to one another. By analyzing sinuosity, depth range, and many characteristics of each canyon, identifying a creational pattern was attempted to be defined along the Northern Slope of Puerto Rico. Canyon sinuosity, vertical relief and horizontal distance at various depths, and canyon slope were used to aid in the study of the canyons.

Methods

Results
The majority of the canyons, (with the exception of J, L, and M) have similar breadth as depth increases, however, no general overall trend can be identified (Fig. 5 A).
Overall, the canyons in all study areas have low sinuosity and are relatively straight, canyon sinuosity generally decreases from west to east. Canyons E and G have the highest sinuosity (Fig. 5 B). The Western canyons have the greatest along-axis slope, and the Eastern canyons have the lowest slope and least sinuosity (Fig. 5 C).
The majority of canyons have 100 m vertical relief from 600 m to 1200 m (Tab. 1). The breadth of the canyons does not increase as depth increases, and no particular pattern can be identified (Fig. 5 A).

Discussion

Off the Northern slope of Puerto Rico, numerous sub-marine canyons were mapped and measured. As one moves from west to east, the canyons decrease in slope significantly, and their sinuosity decreases minutely. The variable breadth of the canyons has no specific pattern and does not display the typical increase as depth increases within the given depth range. If more data were to be obtained, more information could be gathered about the breadth of the canyons as a greater depth range could be examined. The canyon sinuosity does not increase as slope increases, as seen in Figure 5 A . Despite the increase in slope in the Western Study Area, no particular pattern of increased sinuosity in this area can be identified.
Overall, the 15 canyons studied on the Northern Slope of Puerto Rico are all similar with a similar vertical canyon relief and sinuosity. No outlying examples were identified, which could hint at extremely similar forces of creation acting on the majority of these canyons. If more data were to be obtained into the deeper parts of this area, further examination could be made at lower depths where sinuosity, breadth, slope, and vertical and horizontal relief could be very different.

References

Crowell, John C.. "Submarine Canvons Bordering Centra and Southern California". The Journol of Geolooy 60.1 (1952): 58-83
Huang, Z., Nichol, S. L., Harris, P. T., \& Calev, M. J. (2014). Classification of submarine canyons of the Australian continental margin. Marine Geoloogy, $357,362-383$.

